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Sequential Recurrent Neural Networks for Language Modeling

AUTHORS:
Youssef Oualil, Clayton Greenberg, Mittul Singh, Dietrich Klakow, Universitdt des Saarlandes, Germany
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NN-Grams: Unifying Neural Network and n-Gram Language Models for
Speech Recognition

AUTHORS:

Babak Damavandi, Shankar Kumar, Noam Shazeer, Antoine Bruguier, Google, USA
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Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic
and Language Models

AUTHORS:

Thomas Drugman !, Janne Pylkkonen 2, Reinhard Kneser!
T Amazon.com, Germany; °Amazon.com, Finland

Semi-Supervised Training in Deep Learning Acoustic Model

AUTHORS:
Yan Huang, Yonggiang Wang, Yifan Gong, Microsoft, USA

Investigation of Semi-Supervised Acoustic Model Training Based on the
Committee of Heterogeneous Neural Networks

AUTHORS:
Naoyuki Kanda, Shoji Harada, Xugang Lu, Hisashi Kawai, NICT, Japan
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* Select proper data

— Confidence
* High>well train; low—>bad labeling

* Word level: Lattice posterior, avg acoustic score, ROVER (system
combine)

* Frame level: lattice arc posterior in frame, recalibration (system
combine)

— Committee
 Vote from AMs of different archetecture

* Integrate data quality metric into training
— Weighted error signal (frame level)
— Weighted gate parameter in LSTM (frame level)
— Importance sample (data value, quality, prior distribution)

 How to define well-trained data & label quality
respectively?



* Some useful conclusion
— Imperfect labeling is also useful
— Data of high confidence is useless
— LSTM is more sensitive to wrong labeling

— Sequence training is more sensitive to wrong labeling
(except LFMMI?)
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NNLM summary LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition
student-teacher Sequence Student-Teacher Training of Deep Neural Networks

student-teacher Robust Speech Recognition Using Generalized Distillation Framework

student-teacher Model Compression Applied to Small-Footprint Keyword Spotting

student-teacher Distilling Knowledge from Ensembles of Neural Networks for Speech Recognition



Recurrent Neural Network Language Model with Incremental Updated
Context Information Generated Using Bag-of-Words Representation

AUTHORS:

Md. Akmal Haidar, Mikko Kurimo, Aalto University, Finland

context(t) = Acontext(t — 1) + (1 — A)bowgecay (1)

h(t) = f(Uw(t) + Wh(t — 1) + Ghe(t))

he(t) = f(Fcontext(t))

|

Direct concatenate 2 no use

This work:
increment+delay+nonlinear

ppl: 126>115
(IstmIm:115)

Future work:
Deep context layer & Istmim
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Combining Feature and Model-Based Adaptation of RNNLMs for
Multi-Genre Broadcast Speech Recognition

AUTHORS:
Salil Deena, Madina Hasan, Mortaza Doulaty, Oscar Saz, Thomas Hain, University of Sheffield, UK

1. 1-of-K encoding of domain
2. LDA feature
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SNR-Based Progressive Learning of Deep Neural Network for Speech
Enhancement

AUTHORS:

Tian Gao !, Jun Du!, Li-Rong Dai !, Chin-Hui Lee 2
TUSTC, China; °Georgia Institute of Technology, USA
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Data Selection by Sequence Summarizing Neural Network in Mismatch
Condition Training

AUTHORS:

Katefina Zmolikova ', Martin Karafiat !, Karel Vesely !, Marc Delcroix ?, Shinji Watanabe 3,

Lukas Burget!, Jan Cernocky!
IBrno University of Technology, Czech Republic; °NTT, Japan; *MERL, USA
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Figure 3: Plot of the first and second LDA basis on CHiME3
data for i-vectors (left) and summary-vectors (right).

Dataset Selection [%WER]
Random | i-vector | summary-vector
dev 25.8 25.61 24.72
eval 45.58 44.02 43.23




A Framework for Practical Multistream ASR

AUTHORS:

Sri Harish Mallidi, Hynek Hermansky, Johns Hopkins University, USA

(a) Training stage

* Block Dropout features of a

* DNN randomly sees one of the
following input patterns:

- [stream1; stream?2]

*7 * Zis a binary switch
1
streaml
| stream
- .
*S\Ne S - [stream1; 0]
- [0; stream2]
stream2
* 22
(b) Testing stage
streaml

stream2

Compared to multistream: reduce
complexity (but not compare CER)
Compared to dnn baseline: better CER

Use

performance monitor
to select best streams
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NMF A DNN-HMM Approach to Non-Negative Matrix Factorization Based Speech Enhancement
enhance Robust Example Search Using Bottleneck Features for Example-Based Speech Enhancement
enhance Optimization of Speech Enhancement Front-End with Speech Recognition-Level Criterion
data augmentation Realistic Multi-Microphone Data Simulation for Distant Speech Recognition

data augmentation Synthesis of Device-Independent Noise Corpora for Realistic ASR Evaluation

. Data Augmentation Using Multi-Input Multi-Output Source Separation for Deep Neural Network Based Acoustic
data augmentation

Modeling
others Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech Recognition
others Reducing the Computational Complexity of Multimicrophone Acoustic Models with Integrated Feature Extraction

others Far-Field ASR Without Parallel Data



Factorized Linear Input Network for Acoustic Model Adaptation in
Noisy Conditions

AUTHORS:

Dung T. Tran, Marc Delroix, Atsunori Ogawa, Tomohiro Nakatani, NTT, Japan

in._t — Ln (xt) — ant + bnt

State posterior

CNN-based
backend

J

1.Training CNN: noisy data

2.enhance: WPE+MVDR

3.adaptation:

3.1 LIN: bp of certain adaptation data of
certain noise type

3.2 MLP of FLIN:

Input: enhanced data

Criteria: | noisy - enhanced | after FLIN

____________________
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BUS CAF PED STR Ave
Baseline 11.89 8.12 895 890 [9.32
Retrain 10.12  6.57 754 753 |7.94
LIN adaptation 10.57 736 8.18 790 8.50
FLIN (utt) 10.80  7.09 790 7.76 8.38
FLIN + retrain(utt) 9.71 6.69 773 7.25 32

FLIN + retrain(frame)  9.37  6.40 733 1725




Neural Network Adaptive Beamforming for Robust Multichannel
Speech Recognition

AUTHORS:
Bo Li, Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Michiel Bacchiani, Google, USA

R e In the NAB model, we estimate the filter
""" genmarel ' f coefficients jointly with the AM
i A parameters by directly minimizing a
”';"*' LS:M cross-entropy or sequence loss function.
5 DNN || LSTM
s e An LSTM to predict N filter coefficients
- per channel.
i Compared to fixed factor filters (Tara.

ICASSP2016): less computation
Compared to single chan.: better WER

WER (%)
CE  Seq.

unfactored [2] 21.7 17.5
s = : factored [3] 204 17.1
x,(k)[t] NAB 205 17.2

Model




