IS2016 paper review

Zhehuai Chen chenzhehuai@foxmail.com

总体感觉(个人)

- AM: CNN, FSMN, highway...
- Robust, far-field: 框架没有改变,结构有研究创新,但不一定可商用
- LM: 同上
- Decoder: 无
- 合成, Speaker, 自适应, SLU: 没仔细看

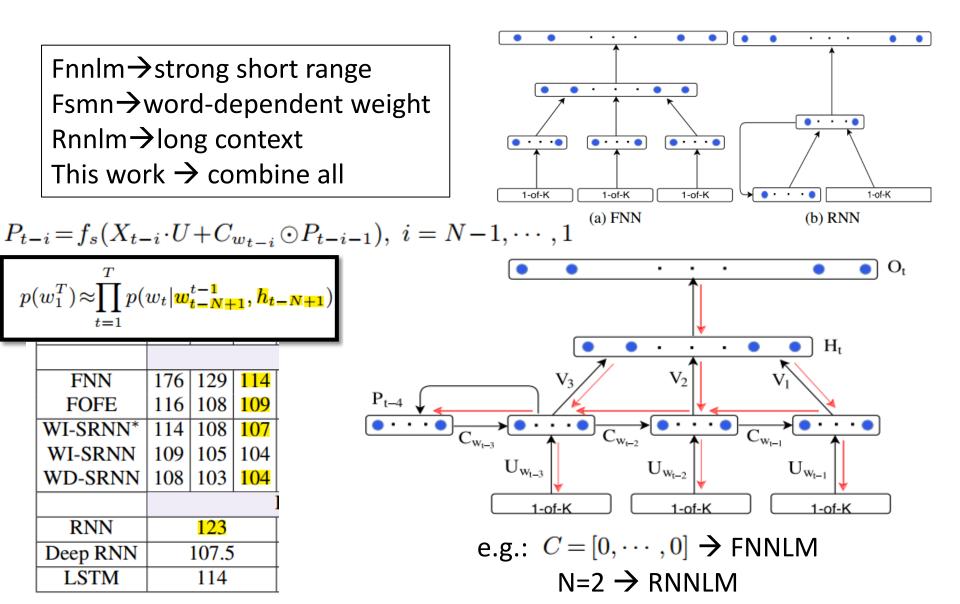
IS2016 paper review (LM & AM)

Zhehuai Chen chenzhehuai@foxmail.com

Sequential Recurrent Neural Networks for Language Modeling

AUTHORS:

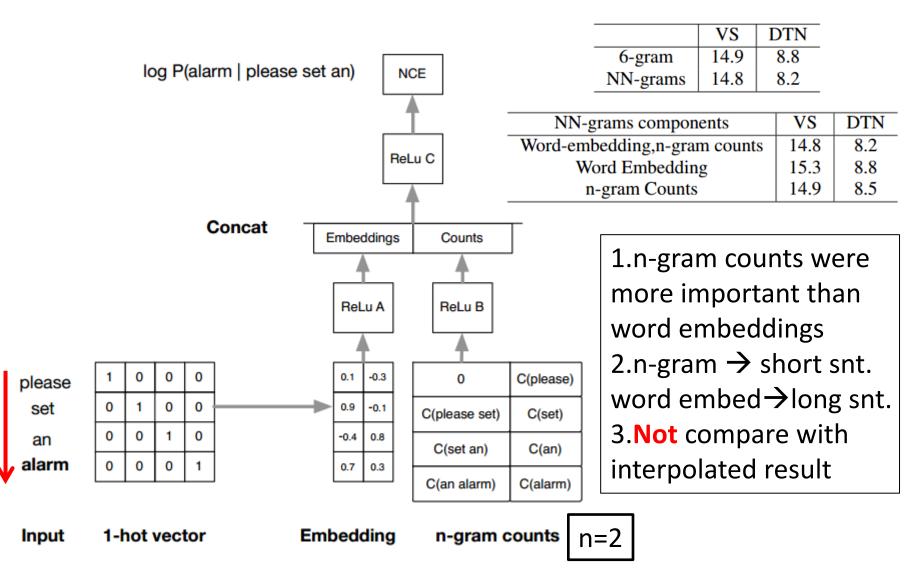
Youssef Oualil, Clayton Greenberg, Mittul Singh, Dietrich Klakow, Universität des Saarlandes, Germany



NN-Grams: Unifying Neural Network and n-Gram Language Models for Speech Recognition

AUTHORS:

Babak Damavandi, Shankar Kumar, Noam Shazeer, Antoine Bruguier, Google, USA



Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models

AUTHORS: Thomas Drugman¹, Janne Pylkkönen², Reinhard Kneser¹ ¹Amazon.com, Germany; ²Amazon.com, Finland

Semi-Supervised Training in Deep Learning Acoustic Model

AUTHORS: Yan Huang, Yongqiang Wang, Yifan Gong, *Microsoft, USA*

Investigation of Semi-Supervised Acoustic Model Training Based on the Committee of Heterogeneous Neural Networks

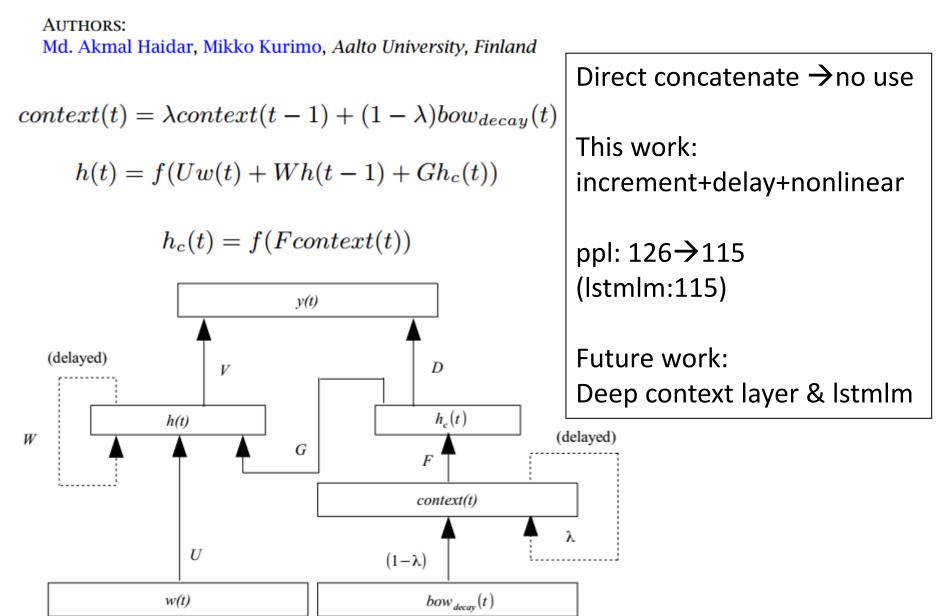
AUTHORS: Naoyuki Kanda, Shoji Harada, Xugang Lu, Hisashi Kawai, *NICT, Japan*

- Select proper data
 - Confidence
 - High→well train; low→bad labeling
 - Word level: Lattice posterior, avg acoustic score, ROVER (system combine)
 - Frame level: lattice arc posterior in frame, recalibration (system combine)
 - Committee
 - Vote from AMs of different archetecture
- Integrate data quality metric into training
 - Weighted error signal (frame level)
 - Weighted gate parameter in LSTM (frame level)
 - Importance sample (data value, quality, prior distribution)
- How to define well-trained data & label quality respectively?

- Some useful conclusion
 - Imperfect labeling is also useful
 - Data of high confidence is useless
 - LSTM is more sensitive to wrong labeling
 - Sequence training is more sensitive to wrong labeling (except LFMMI?)

topic	paper
NNLM summary	LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition
student-teacher	Sequence Student-Teacher Training of Deep Neural Networks
student-teacher	Robust Speech Recognition Using Generalized Distillation Framework
student-teacher	Model Compression Applied to Small-Footprint Keyword Spotting
student-teacher	Distilling Knowledge from Ensembles of Neural Networks for Speech Recognition

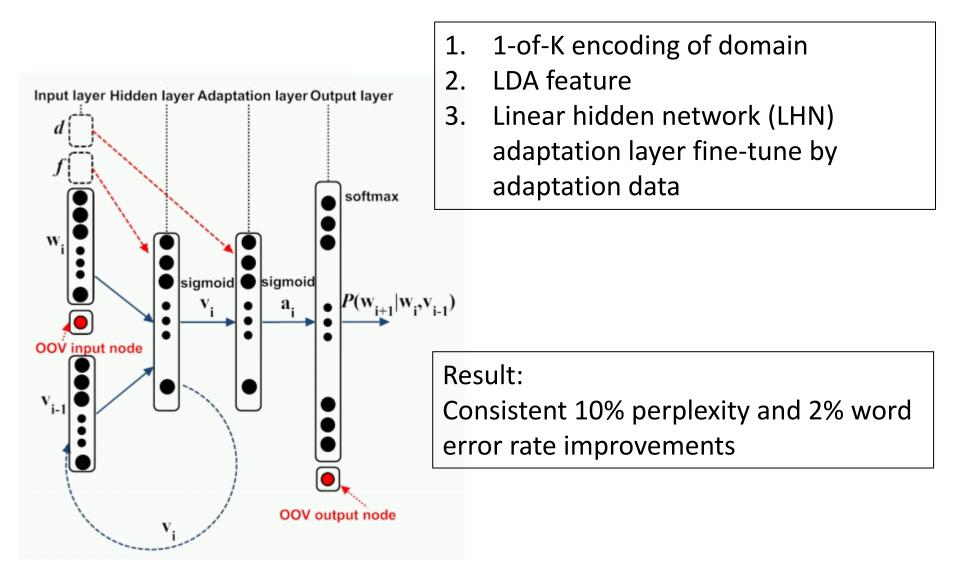
Recurrent Neural Network Language Model with Incremental Updated Context Information Generated Using Bag-of-Words Representation



Combining Feature and Model-Based Adaptation of RNNLMs for Multi-Genre Broadcast Speech Recognition

AUTHORS:

Salil Deena, Madina Hasan, Mortaza Doulaty, Oscar Saz, Thomas Hain, University of Sheffield, UK



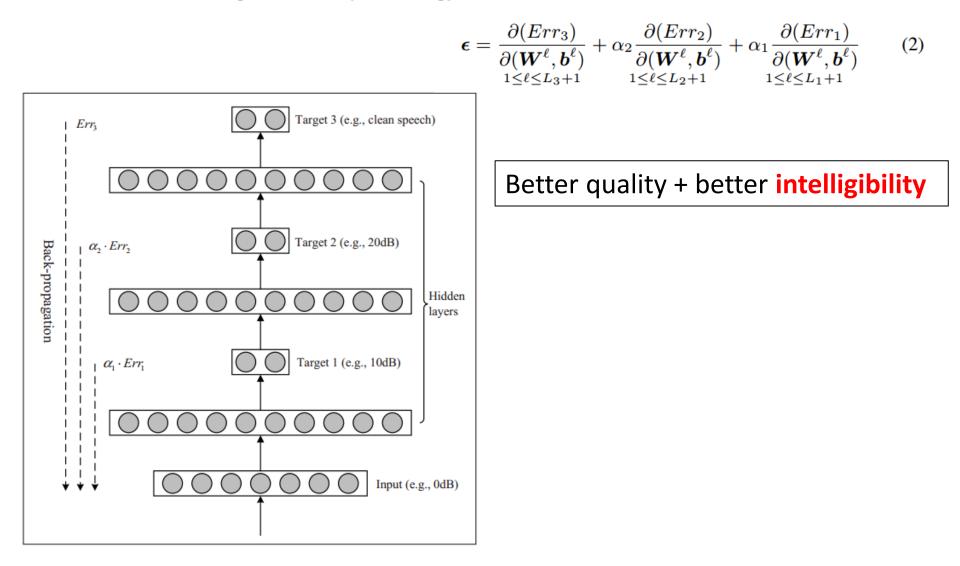
IS2016 paper review (robust ASR & far field)

Zhehuai Chen chenzhehuai@foxmail.com

SNR-Based Progressive Learning of Deep Neural Network for Speech Enhancement

AUTHORS:

Tian Gao¹, Jun Du¹, Li-Rong Dai¹, Chin-Hui Lee² ¹USTC, China; ²Georgia Institute of Technology, USA

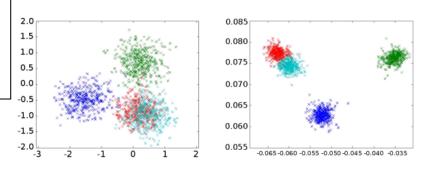


Data Selection by Sequence Summarizing Neural Network in Mismatch Condition Training

AUTHORS:

Kateřina Žmolíková¹, Martin Karafiát¹, Karel Veselý¹, Marc Delcroix², Shinji Watanabe³, Lukáš Burget¹, Jan Černocký¹ ¹Brno University of Technology, Czech Republic; ²NTT, Japan; ³MERL, USA

selecting **subset of training data** with respect to **similarity** of acoustic conditions to test data



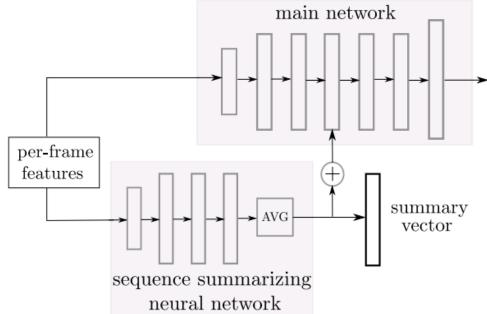


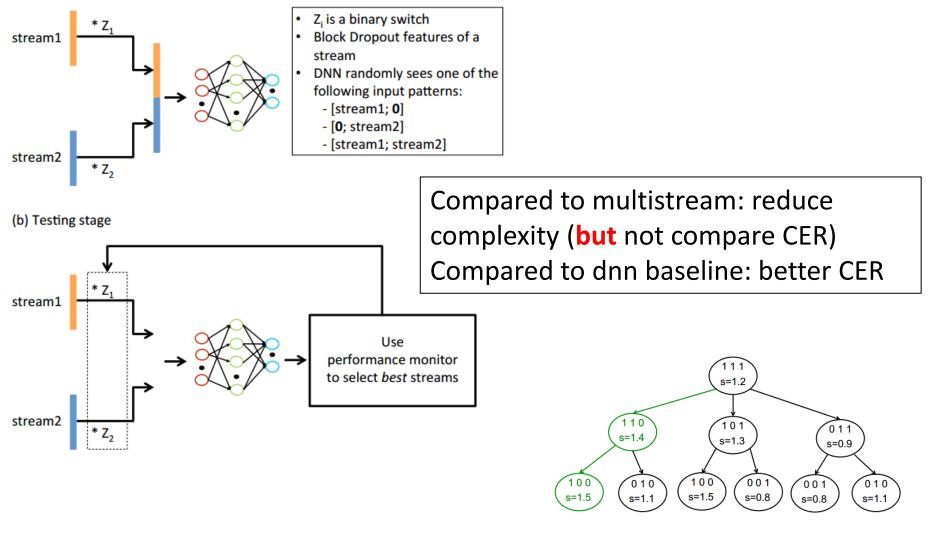
Figure 3: Plot of the first and second LDA basis on CHiME3 data for i-vectors (left) and summary-vectors (right).

Dataset	Selection [%WER]		
	Random	i-vector	summary-vector
dev	25.8	25.61	24.72
eval	45.58	44.02	43.23

A Framework for Practical Multistream ASR

AUTHORS: Sri Harish Mallidi, Hynek Hermansky, Johns Hopkins University, USA

(a) Training stage



topic	paper
NMF	A DNN-HMM Approach to Non-Negative Matrix Factorization Based Speech Enhancement
enhance	Robust Example Search Using Bottleneck Features for Example-Based Speech Enhancement
enhance	Optimization of Speech Enhancement Front-End with Speech Recognition-Level Criterion
data augmentation	Realistic Multi-Microphone Data Simulation for Distant Speech Recognition
data augmentation	Synthesis of Device-Independent Noise Corpora for Realistic ASR Evaluation
data augmentation	Data Augmentation Using Multi-Input Multi-Output Source Separation for Deep Neural Network Based Acoustic Modeling
others	Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech Recognition
others	Reducing the Computational Complexity of Multimicrophone Acoustic Models with Integrated Feature Extraction
others	Far-Field ASR Without Parallel Data

Factorized Linear Input Network for Acoustic Model Adaptation in **Noisy Conditions**

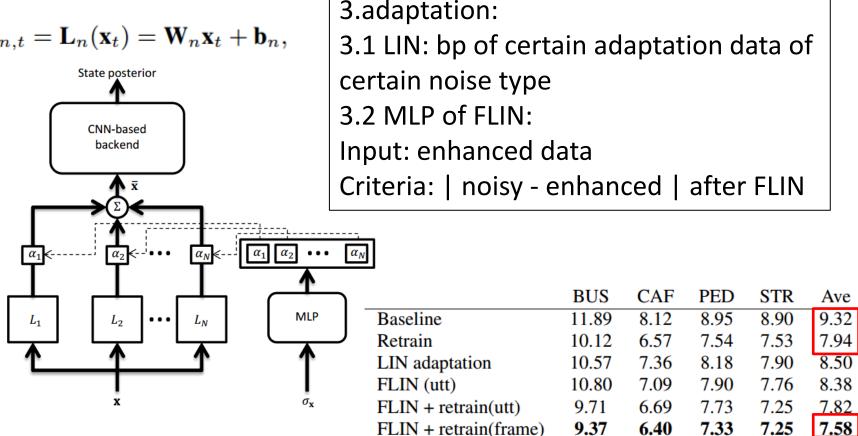
1.Training CNN: noisy data

2.enhance: WPE+MVDR

AUTHORS:

Dung T. Tran, Marc Delroix, Atsunori Ogawa, Tomohiro Nakatani, NTT, Japan

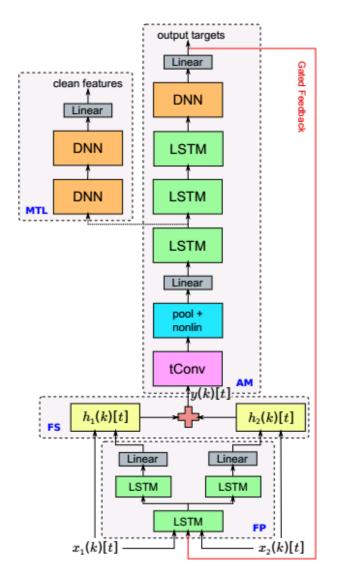
$$\hat{\mathbf{x}}_{n,t} = \mathbf{L}_n(\mathbf{x}_t) = \mathbf{W}_n \mathbf{x}_t + \mathbf{b}_n,$$



Neural Network Adaptive Beamforming for Robust Multichannel Speech Recognition

AUTHORS:

Bo Li, Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Michiel Bacchiani, Google, USA



In the NAB model, we estimate the filter coefficients jointly with the AM parameters by directly minimizing a cross-entropy or sequence loss function.

An LSTM to predict N filter coefficients per channel.

Compared to fixed factor filters (Tara. ICASSP2016): less computation Compared to single chan.: better WER

Model	WER (%)		
	СЕ	Seq.	
unfactored [2]	21.7	17.5	
factored [3]	20.4	17.1	
NAB	20.5	17.2	